B.Sc. Semester I (Honours) Examination, 2019 ELECTRONICS

Course ID : 11711

Course Code : SHELC-101C-1(T)
Course Title : Basic Circuit Theory and Network Analysis
Time: 1 Hour 15 Minutes
Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any three of the following:
(a) State one limitation of Ohm's law.
(b) Draw V-I characteristics of an ideal voltage source.
(c) What is 'node' of a circuit?
(d) What is the equivalent capacitance when several capacitances $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3} \ldots, \mathrm{C}_{\mathrm{n}}$ are connected in series?
(e) Draw the symbolic representations of a DC voltage source and a DC current source.
(f) A voltage source has internal impedance $(4+j 5) \Omega$. Find the load impedance for maximum power transfer.
2. Answer any three of the following:
(a) What do you mean by dependent and independent sources?
(b) What are active and passive circuit elements? Give examples of each.
(c) States Kirchoff's Voltage Law (KVL) and Kirchoff' Current Law (KCL).
(d) Distinguish between 'mesh' and 'loop' of an electric circuit.
(e) In a series RLC circuit, if the value of L and C are $100 \mu \mathrm{H}$ and $0 \cdot 1 \mu \mathrm{~F}$ respectively, find the resonant frequency in Hz .
(f) What is an alternating current? What is period?
3. Answer any two of the following: $5 \times 2=10$
(a) Transform the T (star) network to π (Delta) network.

(b) State and prove Thevenin's theorem for dc network.
(c) An alternating e.m.f. is applied to a pure inductor and a pure capacitor. Investigate the phase relationship of the alternating current with the alternating e.m.f. in each case. What do you mean by wattles current?
(d) For the circuit shown below, find the currents in each branch by nodal method.

4. Answer any one of the following:
$6 \times 1=6$
(a) What is two-port network? Find the h-parameters of the two-port network shown below.

(b) A constant e.m.f. E is applied to a circuit containing a resistor R and a capacitor C in series. Deduce an expression for the charge on the capacitor as a function of time. Define time constant of an RC circuit.
$4+2=6$
(c) State Maximum Power Transfer theorem. Find the value of R_{L} for the circuit shown below so that maximum power is transferred to R_{L} from battery and hence find the amount of maximum power transferred.
$2+2+2=6$

