10385

B.Sc. Semester I (Honours) Examination, 2019 ELECTRONICS

Course ID : 11711

Course Title : Basic Circuit Theory and Network Analysis

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer *any three* of the following:
 - (a) State one limitation of Ohm's law.
 - (b) Draw V-I characteristics of an ideal voltage source.
 - (c) What is 'node' of a circuit?
 - (d) What is the equivalent capacitance when several capacitances $C_1, C_2, C_3, ..., C_n$ are connected in series?
 - (e) Draw the symbolic representations of a DC voltage source and a DC current source.
 - (f) A voltage source has internal impedance $(4 + j5)\Omega$. Find the load impedance for maximum power transfer.
- 2. Answer *any three* of the following:
 - (a) What do you mean by dependent and independent sources?
 - (b) What are active and passive circuit elements? Give examples of each.
 - (c) States Kirchoff's Voltage Law (KVL) and Kirchoff' Current Law (KCL).
 - (d) Distinguish between 'mesh' and 'loop' of an electric circuit.
 - (e) In a series RLC circuit, if the value of L and C are 100μ H and 0.1μ F respectively, find the resonant frequency in Hz.
 - (f) What is an alternating current? What is period?

3.	Answer any two of the following:	

(a) Transform the T(star) network to π (Delta) network.

(b) State and prove Thevenin's theorem for dc network.

2+3=5

 $5 \times 2 = 10$

5

SH-I/Electronics-101C-1(T)/19

Course Code : SHELC-101C-1(T)

$1 \times 3 = 3$

 $2 \times 3 = 6$

Full Marks: 25

SH-I/Electronics-101C-1(T)/19 (2)

- (c) An alternating e.m.f. is applied to a pure inductor and a pure capacitor. Investigate the phase relationship of the alternating current with the alternating e.m.f. in each case. What do you mean by wattles current?
- (d) For the circuit shown below, find the currents in each branch by nodal method.

- 4. Answer *any one* of the following:
 - (a) What is two-port network? Find the h-parameters of the two-port network shown below.

 $1 - \frac{2\alpha}{2} - \frac{3\alpha}{2} - \frac{2}{3}$

- (b) A constant e.m.f. E is applied to a circuit containing a resistor R and a capacitor C in series. Deduce an expression for the charge on the capacitor as a function of time. Define time constant of an RC circuit. 4+2=6
- (c) State Maximum Power Transfer theorem. Find the value of R_L for the circuit shown below so that maximum power is transferred to R_L from battery and hence find the amount of maximum power transferred. 2+2+2=6

6×1=6

2+4=6